Injectable Amorphous Chitin-Agarose Composite Hydrogels for Biomedical Applications
نویسندگان
چکیده
Injectable hydrogels are gaining popularity as tissue engineering constructs because of their ease of handling and minimal invasive delivery. Making hydrogels from natural polymers helps to overcome biocompatibility issues. Here, we have developed an Amorphous Chitin (ACh)-Agarose (Agr) composite hydrogel using a simpletechnique. Rheological studies, such as viscoelastic behavior (elastic modulus, viscous modulus, yield stress, and consistency), inversion test, and injectability test, were carried out for different ACh-Agr concentrations. The composite gel, having a concentration of 1.5% ACh and 0.25% Agr, showed good elastic modulus (17.3 kPa), yield stress (3.8 kPa), no flow under gravity, injectability, and temperature stability within the physiological range. Based on these studies, the optimum concentration for injectability was found to be 1.5% ACh and 0.25% Agr. This optimized concentration was used for further studies and characterized using FT-IR and SEM. FT-IR studies confirmed the presence of ACh and Agr in the composite gel. SEM results showed that the lyophilized composite gel had good porosity and mesh like networks. The cytocompatibility of the composite gel was studied using human mesenchymal stem cells (hMSCs). The composite gels showed good cell viability.These results indicated that this injectable composite gel can be used for biomedical applications.
منابع مشابه
Use of Polysaccharide Hydrogels in Drug Delivery and Tissue Engineering
Present review article aims to explain use of injectable hydrogels and microspheres derived from natural polysaccharides as drug delivery systems and cell scaffolds. Polysaccharides isolated from natural sources are proved much better than synthetic polymers for making single and composite hydrogels. This paper emphasizes recent developments occurred in use of amphiphilic polysaccharides for bi...
متن کاملInjectable Hydrogels: A Review of Injectability Mechanisms and Biomedical Applications
Hydrogels have been used for biomedical applications in recent decades. They are a perfect candidate for regenerative medicine as they resemble the extracellular matrix of native tissues. In addition, their highly hydrated structure makes them a suitable choice for drug and other therapeutics delivery. Injectable hydrogels have increasingly gained attention due to their capability for homogeneo...
متن کاملA Rheological Study of Biodegradable Injectable PEGMC/HA Composite Scaffolds.
Injectable biodegradable hydrogels, which can be delivered in a minimally invasive manner and formed in situ, have found a number of applications in pharmaceutical and biomedical applications, such as drug delivery and tissue engineering. We have recently developed an in situ crosslinkable citric acid-based biodegradable poly (ethylene glycol) maleate citrate (PEGMC)/hydroxyapatite (HA) composi...
متن کاملHydrogels for Biomedical Applications: Cellulose, Chitosan, and Protein/Peptide Derivatives
Hydrogels based on polysaccharide and protein natural polymers are of great interest in biomedical applications and more specifically for tissue regeneration and drug delivery. Cellulose, chitosan (a chitin derivative), and collagen are probably the most important components since they are the most abundant natural polymers on earth (cellulose and chitin) and in the human body (collagen). Pepti...
متن کاملShear-thinning hydrogels for biomedical applications
Injectable hydrogels are becoming increasingly important in the fields of tissue engineering and drug delivery due to their tunable properties, controllable degradation, high water content, and the ability to deliver them in a minimally invasive manner. Shear-thinning is one promising technique for the application of injectable hydrogels, where preformed hydrogels can be injected by application...
متن کامل